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The approach to equilibrium in a non-equilibrium-dissociating boundary-layer 
flow along a catalytic or non-catalytic surface is treated from the standpoint of 
a singular perturbation problem, using the method of matched asymptotic 
expansions. Based on a linearized reaction rate model for a diatomic gas which 
facilitates closed-form analysis, a uniformly valid solution for the near equi- 
librium behaviour is obtained as the composite of appropriate outer and inner 
solutions. It is shown that, under near equilibrium conditions, the primary non- 
equilibrium effects are buried in a thin sublayer near the body surface that is 
described by the inner solution. Applications of the theory are made to the calcu- 
lation of heat transfer and atom concentrations for blunt body stagnation point 
and high-speed flat-plate flows; the results are in qualitative agreement with the 
near equilibrium behaviour predicted by numerical solutions. 

1. Introduction 
During recent years, there has been a widespread interest in the theoretical 

prediction of non-equilibrium-dissociating boundary-layer properties. As a result, 
a variety of numerical methods with varying degrees of accuracy and complexity 
have been developed for this problem. Despite such advances, however, simplified 
analytical solutions continue to be of interest in understanding the underlying 
physical behaviour of reacting boundary-layer flows. One such method of solution 
is the perturbation approach, where the gas-phase reaction effects are treated as 
small departures from either a chemically frozen (non-reacting) or a completely 
equilibrium (infinitely fast-reacting) flow. The analysis of the former situation 
proceeds in a straightforward way by expanding the local dependent variables 
about the frozen solution in a series of ascending positive powers of an appropriate 
(convection timelreaction time) ratio, yielding perturbation solutions that are 
uniformly valid throughout the boundary layer. These nearly frozen solutions 
have been investigated by Rae (1963) for the case of flat-plate flow and by Inger 
(1964) for an entire family of non equilibrium boundary-layer flows including 
pressure-gradient effects. In  contrast, the nearly equilibrium situation, which 
involves a singular perturbation problem, has received relatively little attention. 
A theory has been proposed by Lenard (1962, 1963) in which a perturbation 
procedure analogous to that employed in the nearly frozen case is used. However, 
as will be shown, this theory does not yield a uniformly valid solution across the 
boundary layer and indeed fails to recognize the singular-perturbation nature of 
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the problem. To date, a satisfactory theory of the approach to equilibrium in 
a dissociating boundary layer has not been given. 

In  the present paper, such a theory is developed based on the method of 
matched asymptotic expansions as described by Van Dyke (1964). This method, 
which has been successfully applied to a wide variety of singular-perturbation 
problems in fluid mechanics, enables one to obtain a uniformly valid description 
of the near equilibrium behaviour throughout the boundary layer. Our develop- 
ment of the theory will proceed as follows. First, the general non-equilibrium 
boundary-layer equations for a, dissociating diatomic gas are formulated under 
a set of simplifying approximations (including a linearized-reaction-rate model) 
which allow analysis in closed form. The near equilibrium situation is then 
examined and its singular-perturbation nature defined. An outer solution, which 
is invalid near the wall, is obtained, a portion of which is equivalent to the com- 
plete solution proposed by Lenard. A corresponding inner solution accounting 
for the effects of the wall is then constructed and matched to the outer solution. 
Finally, specific applications of the theory are presented for both stagnation- 
point and flat-plate boundary-layer flow. 

2. Governing equations 
We consider non-equilibrium boundary-layer flow of a dissociating diatomic 

gas along an impervious axisymmetric or two-dimensional body which is either 
adiabatic or has a uniform surface temperature. The inviscid flow at the edge of 
the boundary layer is taken to be in chemical equilibrium and any pressure 
gradient therein is neglected. These assumptions are exact for wedges and cones 
at supersonic speeds and also apply approximately to a highly cooled stagnation 
point on a hypersonic blunt body (Lees 1956). Furthermore, the customary 
simplifying assumptions are made that the Prandtl and Lewis numbers are equal 
to unity and that both the density-viscosity product p p  and the mixture specific 
heat cp are constants. Finally, to facilitate a closed-form analysis of the near 
equilibrium perturbation behaviour, the gas phase dissociation-recombination 
chemistry will be idealized by the linearized model previously used by Broadwell 
(1958) and Chung (1960). According to this model, the gas is assumed to have an 
equilibrium atom concentration-temperature relationship of the form 

aE0 = C,+C,T 

and it net volumetric dissociation rate 

TP = KRp(C1 + C2T - a), (1) 

where the constants C,, C, and K R  depend only on the pressure and type of gas 
involved. It is understood, of course, that this linearized model is probably not 
a satisfactory quantitative representation of the dissociating diatomic gas 
chemistry in actual boundary-layer flows. 

It is emphasized that the foregoing approximations are adopted solely as a 
matter of convenience in simplifying the discussion and are not essential to the 
basic ideas presented herein. The present work is thus aimed at studying the 
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essential features of the near equilibrium boundary layer by the method of 
matched asymptotic expansions rather than at constructing an analysis suitable 
for detailed calculations in practical applications. 

Introduce now the well-known boundary-layer variables (Lees 1956) 

u = tc,df/dv = U, f’, ( 2 4  
where j = 0 or 1 for two-dimensional or axi-symmetric flows, respectively, 
C = pp/pepe is the Chapman-Rubesin constant, and the subscript e denotes 
conditions at the outer edge of the boundary layer. Then the equations of 
momentum, energy, and atom mass-concentration conservation take the form 

ff“+f”’ = 0, (3) 

where the terms on the right side of (4) are defined below. The total enthalpy 
Hi s  related to the atom mass fraction and to the static temperature T by 

hD being the dissociation energy per unit atom mass. 
The parameter F in (4) is a characteristic ratio of convection time to gas 

phase reaction time (or Damkohler number) for the boundary layer, defined by 
the expression? tR? = 2tK,(ue dt/dX)-l. It therefore characterizes the gross 
magnitude of the chemical reaction effects between the two extremes of 
chemically frozen (F+O) and completely equilibrium (?+GO) flow, and is 
regarded as the fundamental parameter in the present problem. The coefficient 
(R of in equation (4) represents the streamwise variation of the reaction effect 
along the body. It causes the non-equilibrium boundary layer to be non-similar 
except in the special case of a stagnation-point flow on a symmetric body where 
R= 0. 

The boundary conditions are as follows. At the outer edge of the boundary 

H = CpT+CthD+&h~(f’)2, (6) 

layer f’(Co) = 1, a(t,m) = a, = c,+c,T,, T(5,co) = T,  
and 
At the body surface 

H ( [ , G o )  = He = ~,~+a,h,+&u,2. 
f(0) = f’(0) = 0, 

H(t7 0) = cp  Tw + h,a(E, 0). 

(7a)  
T(6,O) = !&, = const. or aH($,O)/ar = 0, (7 b )  

( 7 4  
t For supersonic flows over wedges or cones of semi-angle S,, 

f = 2KR{[(2j+ 1) sin OBl2jlaj+l ~.:(j+l)’~j+l (Cp,pe) 1/(2j+ 1)I-l and R = (2j+ l)-l, 

whereas, at the stagnation point of a blunt body, 
= K R  (1 +j)-l (du,/dX)-’ and R = 0. 
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If for the sake of simplicity the wall is taken to be either perfectly catalytic or 
completely non-catalytic with respect to atom recombination on the surface, we 
also have either 

a(( ,  0 )  = C X ~ ~ , ~  = C,+C2Tw (perfectly catalytic), 

or aa(E, O ) / @  = 0 (completely non-catalytic). (8 b )  

The solution of (3) subject to the stated boundary conditions is recog- 
nized as the classical Blasius velocity profile in a flat-plate boundary layer. For 
later purposes, it  is noted here that near the wall this solution takes the series 
form (Rosenhead 1963) 

f(7) = ..., where A = f ” ( O )  21 0.470 and B = 0.0018. 

3. The equilibrium solution 
Before treating the near-equilibrium perturbation problem, it is helpful to 

f i s t  examine briefly the limiting equilibrium solution defined by the foregoing 
equations. 

Formally, the equilibrium solution is associated with the limit ? -+ co. In  this 
limit, since the left side of (4) must be finite, we obtain aEQ = Cl+CzTEQ, which 
is simply the local equilibrium composition-temperature relationship. More- 
over, since this limiting solution obtains independently of the term $R in (a), 
the equilibrium boundary-layer properties are clearly self-similar, i.e. a func- 
tion of 7 alone, under the present boundary conditions. The energy equation (5) 
thus reduces to an ordinary differential equation with the following Crocco 
integral solution for the equilibrium total-enthalpy profile: 

with HEQ, 
profile is then found from (6) and (9) to be 

= C, T, + aEQ, whD. The corresponding equilibrium temperature 

where the parameter D = hDCz/c, = hD(ae- aE&,w)/cp(Te- qv) may be inter- 
preted as an average ratio of the dissociation energy change to thermal energy 
change across the boundary layer. In  the present approximation, the result 
obtained by setting D = 0 in (10) is formally identical to the temperature profile 
for chemically frozen flow. Thus it can be seen that the effect of equilibrium gas- 
phase reaction decreases the average boundary-layer temperature by allowing 
some of the thermal energy produced by viscous dissipation to be absorbed in 
dissociation of the molecules. 

The foregoing equilibrium solution ignores the atom-concentration boundary 
conditions on the wall. In  fact, it  can be seen from (8) that this solution is com- 
patible with the wall only in the extreme case of a perfectly catalytic surface. 
Thus in considering the approach to equilibrium in the presence of a finite 
or zero heterogeneous atom recombination rate, one would expect to find a 
thin non-equilibrium sublayer adjacent to the waII wherein the equilibrium 
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solution is never attained. This situation was first observed by Hirschfelder 
(1957) in his analysis of chemical reactions in a simple heat conductivity cell, and 
was subsequently discussed qualitatively for boundary-layer flows by Cheng 
(1957). In  the present work, the sublayer phenomenon emerges more or less 
automatically from the method of analysis in that it essentially determines the 
scale of the inner solution near the wall. 

In  preparation for the non-equilibrium analysis to follow, it is convenient to 
rewrite (4) and (5) with deviations from the local equilibrium solution as the 
dependent variables. To do this, we first note from (6) that the non-equilibrium 
boundary-layer temperature profile can be written as 

w 2 7 )  = ~ ~ ~ ( 7 ) + C ~ l [ ~ t g , 7 ) - ~ E ~ ( 7 ) 1  -+[.(5,7)-a,Q(r)I. (11) 
623 

Defining I? = ( 1  + D )  and the new dependent variables di = a(&?) -aEQ(?), 
G = hsl[EZ(g, 7) - HEQ(7)] ,  the (1 1 )  and the foregoing properties of the self-similar 
local equilibrium solution enable the specie conservation and energy equations 
(4) and ( 5 ) ,  respectively, to be rewritten as follows: 

subject to the boundary conditions 

&(5,00) = G(5,O) = 0, 

i i ( g , O )  = G(5,O) = 0 catalytic wall, 

aii(6, O)/@ = -akQ(0), G(6,O) = a(6,O) non-catalytic wall. 

Since (13 )  is a linear homogeneous differential equation, it is clear from boundary 
conditions (1 4 a) and (14 b) that the solution for G( 5, r )  is trivial unless the atom 
concentration on the wall deviates from equilibrium. Thus, for a perfectly 
catalytic wall, we have 

which simply expresses the well-known fact that the total enthalpy distribution 
across a boundary layer on a catalytic surface is invariant to gas-phase reaction 
when the Lewis number is unity. 

G(5,rl) = 0, (15) 

4. The approach to equilibrium: outer solution 
Consider ( 1 2 )  in the case of nearly equilibrium flow where I‘ is very large. 

Now as r -+ 00, it can be seen that the quantity di - D( 1 + D)-lG tends to vanish 
like (I?<R)-l. Thus it is reasonable as a first attempt to solve (12) in the near 
equilibrium limit to assume a series expansion for the aforementioned quan- 
tity in the form 

m 
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where in anticipation of the non-uniformly valid nature of the problem the 
subscript o has been used to denote the outer solution so as to distinguish it from 
the inner solution (subscript i) given below. Then substituting (16) into (12), 
making use of (13) and collecting terms in like powers of I?, we obtain the following 
equations governing the perturbation functions Go, N :  

do l(r) = f&&Q +&&Q = aLfJ(0) [.f"(7)/A12, 

4, z(r) = fd;, 1 + 4 , 1 +  ZRf %,l, 

d o , N ( r )  = ~ E ~ , N - ~ + G ~ , N - ~ + ~ R ( N -  1)Eo, ~ - 1 ,  

(17a) 

(17 b )  

(17 c) 

where (11) has been used to simplify the right side of (17a) as indicated. 
Equations (17) define the Nth-order atom concentration perturbation as an 
algebraic function of derivatives of the &o,N-l. Since all derivatives of the 
unknowns must vanish exponentially at 7 -+ co in a boundary-layer flow, it is seen 
that all the G o , N ( ~ )  = 0 as required by the outer boundary conditions (14a). 
However, the inner boundary conditions (14b)-( 1 4 4  obviously cannot be satis- 
fied by these algebraic solutions, as is readily verified. The series solution (16) 
therefore cannot be a correct description of the near equilibrium behaviour near 
the wall but rather is in the nature of an outer asymptotic solution for large I?. 
The difficulty of course arises from the fact that, when the expansion (16) is 
substituted into the specie conservation equation (12), all derivatives of the 
unknown E ,  (including the highest-order or diffusion term) are lost, resulting in 
a singular-perturbation problem. 

The energy equation (13) governing the total enthalpy perturbation G(6,q)  is 
a linear homogeneous differential equation that does not contain I' explicitly. 
Therefore, in view of the boundary conditions (14a) and (144 ,  the solution for G 
will be proportional to the atom concentration perturbation on the wall with an 
implicit dependence on I' as determined by this perturbation. Consequently, the 
solution for G throughout the boundary layer on a non-catalytic wall is deter- 
mined completely by the inner atom-concentration solution, as will be shown 
below. 

It is pointed out that the series solution (16) with the term D(l+D)- lG 
dropped is essentially the form proposed by Lenard (1962, 1963) as a complete 
solution for near-equilibrium boundary-layer flows. It is clear from the foregoing 
discussion, however, that for a perfectly catalytic wall (G = 0 )  his solution is 
only an outer asymptotic representation valid sufficiently far from the wall. 
Furthermore, in the non-catalytic wall case, Lenard's approach fails t o  give even 
a complete outer solution, since it neglects the asymptotic influence of the non- 
equilibrium eiithalpy perturbation near the wall contained in the term 

w +Q-lQ(Lq).  

5. Inner solution and matching 
The fundamental property required of the inner solution is that it should take 

proper account of the diffusion term and its balance with the homogeneous 
chemical reaction rate near the wall. Now atom diffusion and reaction are of the 
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same order (and the outer solution fails) within a sublayer adjacent to the wall 
whose thickness 7" is of the order of 7" N F-*, so that the inner solution should 
therefore be constructed in a new normal co-ordinate whose scale has been 
contracted by this thickness. Accordingly, we define the new independent inner 
variable Q = I3q, in terms of which (12) can be rewritten for large I', as 

subject to the wall boundary conditions a(<, 0) = 0 or aa(E, O)/aQ = - F-taiQ(0). 
It is observed in (18) that the diffusion and leading reaction-rate terms are inde- 
pendent of r and balance exactly as convection effects vanish on the wall. Thus 
we are assured of accounting correctly for the non-equilibrium behaviour near 
the wall and the surface boundary conditions. 

We now have to solve (13) and (18) subject to the stated boundary conditions. 
As suggested by the form of the above non-catalytic wall boundary condition, 
preliminary study shows that the solutions take the form of the following 
series expansions : 

m 

where we require did, &, 0) = 0 on a catalytic wall or N([ ,  O) /aq  = - 01>~,(0) 
for N = 1 and zero otherwise on a non-catalytic wall and g N ( w )  = 0, g N ( 0 )  = 1. 
Substitution of the series (19) and (20) into (18) then yields the following sequence 
of linear second-order differential equations governing the inner perturbation 
distribution functions dii, N ,  

(21 a )  

[a,,z(5,O)+Qdi,,i(<,O)g;(O)I-a~o(O), (21b)  

mi,, * 

aQ 
a2dii, - 

<-E 2 - C X ~ , ~  = - D( 1 + D)-1."4,1([, 0) ,  

D 
1 + D  

<-Rw ai,z = -- 

We note from these equations that the Nth-order atom concentration perturba- 
tion involves only the (N - 1)th-order enthalpy perturbations. Similarly, substi- 
tution of (20) into (13) yields the following equation governing the g N ( r ) :  

fgk + 9;; 4- NRf ' g N  0, (22) 

where in arriving at  this equation we have anticipated the results (shown below) 
that ai,,,(C, 0)  - c-&NR. 
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The differential equation ( 2 2 )  and boundary conditions gAV(co) = 0, g,(O) = 1 
constitute a type of Sturm-Liouville eigenvalue problem which arises frequently 
in boundary-layer theory. In  the special case of stagnation-point flow R = 0, a 
simple analytical solution is easily obtained by comparing (22 )  with ( 3 )  : 

g*(r) = l-f'(?) (R = 0). (23 )  

For arbitrary non-zero value of R, solutions of this eigenvalue problem (which 
must necessarily be numerical) are apparently unknown a t  present. However, 
in the case of flat-plate or supersonic wedge flow (R = l),  Fox & Libby (1963) 
have made a detailed study of the solution for even values of N ;  a complete 
tabulation of the first ten eigenfunction solutions possessing the property of 
exponential decay at y-tco is given in their paper. There appear to be no com- 
parable results for odd values of N ,  except in the case N = 1, where (22 )  can be 
integrated directly to the analytical solution 

g,(rl) = exp- f(7')dy' = A-lf"(y) (R = 1). so" (24) 
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appendix, shows that the inner and outer expansions will indeed match 
(neglecting exponentially small terms) if El = E, = E, = 0. Thus the final inner 
solutions for the atom concentration perturbations can be written: 

[a ,  l(g, &)]cat. = 0, 

[ai,l(t, &)Inon-cat. = a&,(O) t -@[D+ex~ ( - 6@&)I, 
[4,& &)]cat. = a&,(O) t-R[l - exp ( - 5W)1, 

[ a ,  2fg, Q)Inon-cat. = (1 + D )  5 - R ~ & g ( 0 )  

(28 a )  

(28 6 )  

(29 a )  

+ Dg;(O) 6-Ra&(0) [D + tiR& + exp ( - t@%?)], (29 6) 

(30 G,) [ai,3([7 &)]cat. = 0, 

[a<, 3(5,  &)Inon-cat. = Dt-@qL(O) [ ~ & Q ( o )  + D ~ ; ( o ) ~ & , ( o ) I  

x [D + $%? + exp ( - tgRQ)], (30 6) 

Since the wall boundary condition is compatible with the assumption of gas- 
phase dissociation-recombination equilibrium for a perfectly catalytic surface, 
the vanishing first-order atom concentration perturbation predicted by equation 
(28a)  would be expected. In  contrast, there does exist an incompatibility for 
a non-catalytic surface, and hence a non-vanishing first-order effect is obtained 
as indicated by (286). Observe that this atom concentration perturbation is 
proportional to the equilibrium atom concentration gradient (atom diffusion 
flux) at the wall, which is in accord with physical reasoning. 

The second-order inner atom concentration perturbation (29a)  for a catalytic 
wall is non-vanishing, being directly proportional to a&(O), the volumetric 
equilibrium diffusion source of atoms at the surface. The corresponding non- 
catalytic wall solution (29 b) involves in addition a term proportional to both the 
equilibrium atom f u x  into the surface and the first-order heat-transfer perturba- 
tion. The third-order catalytic-wall solution, which in general would be propor- 
tional to a&(O), vanishes because a&(O) = 0 in the present gas model [see 
(lo)]. In  the non-catalytic case, the perturbation is composed of a term pro- 
portional to this third derivative (here zero) plus a term proportional to the 
second-order heat-transfer perturbation gL(0). Thus we see that each successive 
inner perturbation solution is associated with progressively higher-order equi- 
librium atom-concentration gradients a t  the wall, beginning in the first perturba- 
tion with a;,(O) in the non-catalytic wall case and in the second perturbation 
with a&,(O) for a perfectly catalytic surface. Correspondingly, each higher order 
introduces larger powers of t-4R and hence increasingly stronger non-similar 
effects of non-equilibrium reaction. The present solution therefore correctly 
predicts that the dissociating gas flow in either plate, wedge or cone boundary 
layers always approaches equilibrium sufficiently far downstream of the leading 
edge. Finally, it can be seen from the inner specie equation (18) and its associated 
series solution (19)-(20) that diffusion and chemical reaction mainly govern the 
near equilibrium inner solutions; the explicit influence of convection (the second 
and third terms in ( 1 8 ) )  enters only to order F2 and higher. This is to be 

from which we verify that [a,,&, O)]non.cat, N (-4NR. 

51 Fluid Mech. 26 
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expected, since diffusion and reaction are the dominating effects within the 
low-velocity non-equilibrium sublayer near the wall where the inner solution 
applies. The main influence of convection is contained in the outer solution. 

A typical composite atom concentration solution for near equilibrium flow, 
which is uniformly valid across the boundary layer up to order r-8, is illustrated 
in figure 1. The smooth fairing of the inner solution into the outer asymptotic 
solution at sufficiently large distance from the wall is apparent. Also, the non- 
equilibrium sublayer near the walls whose thickness decreases with increasing I' 
is clearly seen in this figure. 

... 

1 1 I 

0 0.5 1.0 1.5 2.0 

B 

FIGURE I. Typical Composite perturbation solution. Stagnation point non-catalytic wall : 
D = 0.50, a, = 1.0, UEQ,W =i 0. ---- , inner solution; ~ , outer solution. 

6. Some illustrative applications 
The foregoing theory enables one to evaluate the near equilibrium behaviour 

of certain gross boundary-layer properties such as heat transfer that are impor- 
tant experimental observables. In  the remainder of the paper some of these will 
be examined in two examples (blunt body stagnation and hypersonic flat plate 
flow), where numerical solutions of the non-equilibrium boundary-layer equa- 
tions are available for comparison. 

The heat transfer in the present theory for L, = 1 is directly proportional to 
the total enthalpy gradient at the wall and is independent of the gas-phase 
reaction rate when the surface is perfectly catalytic. Consequently, a study of 
non-equilibrium reaction effects on heat transfer (and surface atom concentra- 
tion) involves only the non-catalytic wall solutions. From equations (9), (20) and 
(28 b)-( 30 b ) ,  we obtain for large I' the following general relations governing the 



i-0) ( ~ t R ) - - l d ( 0 )  [ 4 Q ( O )  +D9;(o)akQ(o)l 
+ h,(i + D) wm-p g;(o) g;(o) [a:,(o) + m ; ( o )  a;,(o)i + . . . , (32) 

where g;(O) = gi(0) = gj(0) = ... = - A  for the stagnation point (R = 0) while 
g;(O) = 0 [equation (24)] and gi (0)  = -0-950 (Fox & Libby 1963) for the flat 
plate (R = 1). 

Consider highly cooled blunt-body stagnation-point flow, where by virtue 
of the negligible viscous dissipation (10) yields a&(O) = A[ae -aEQ(0)] and 
a&(O) = 0. Then (31) and (32) simplify to 

.@(t, 0) - ~ , , ( O ) } / { ~ , - ~ ~ ~ ( O ) ) =  (1  + D )  [ A ~ - * - A W ~ - ~ + A ~ D T ~ - -  ...I, (33) 

a ~ g ,  o ) p y  = A c,( i + D) ( T, - T,) [ 1 - DA r -4 + D w r  -1 - ~ 3 ~ 3 r  -t + . . .I, (34) 

between which there exists the simple relation 

According to (33) and (34) the first-order departure from equilibrium, which 
is proportional to r-a, reduces the heat transfer by increasing the corre- 
sponding wall atom concentration and thereby reducing the driving enthalpy 
difference across the boundary layer. For large I?, this result is in agreement with 
both Pay & Riddell's (1958) numerical solution and Inger's (1963) approximate 
analytical theory of the non-equilibrium stagnation-point boundary-layer 
problem. Moreover, by noting that the denominator of the left side of (35) 
is equal to the difference between the equilibrium and frozen heat transfer 
for the present gas model, this equation is also found to agree exactly with known 
results (Lees 1956; Inger 1963). 

A second application of interest is the high-speed flat-plate boundary layer. 
In  particular, we consider the special case of an adiabatic plate surface for which 
numerical solutions of the non-equilibrium boundary-layer equations are avail- 
able. Here, we have 

a&(O) = 0, T,&(O) = T,+u32c,(l +D) 
and a&&O) = -C2A2U&(l +D), 
so that setting (i?H/ar,~)~ = 0 in (31) and (32) yields the following expressions 
for wall atom concentration and recovery temperature, respectively: 

51-2 
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In  contrast to the stagnation-point flow, departure from equilibrium within the 
highly dissipative boundary layer along an adiabatic flat plate decreases the 
non-catalytic wall atom concentration, the leading term in the near-equilibrium 
perturbation being proportional to (I?()-? Correspondingly, the local recovery 
temperature increases. This occurs because dissociation, acting as a heat sink, 
tends to reduce the recovery temperature (as is evident in the equilibrium limit); 
hence the decrease in dissociation level attending a departure from equilibrium 
causes an increase in T ( f ,  0). These conclusions are in qualitative agreement for 
large with the numerical results of Chung & Anderson (1960) and also with 
Broadwell’s (1  958) theory for non-equilibrium Couette flow. 

7. Concluding remarks 

This paper has shown that the method of matched asymptotic expansions can 
be used to solve the singular perturbation problem connected with the approach 
to equilibrium in a dissociating-recombining laminar-boundary-layer flow. 
Moreover, it  has been demonstrated that, unlike the opposite extreme of nearly 
frozen flow, a straightforward parameter perturbation approach involving the 
characteristic gas-phase Damkohler number such as proposed by Lenard does not 
yield a uniformly valid solution across the boundary layer. Indeed, for a non- 
catalytic surface, most of the (small) departure from equilibrium is in fact buried 
in a thin non-equilibrium sublayer near the wall, where it is governed by an inner 
solution that depends only on the local equilibrium solution and derivatives 
thereof. 

The qualitative predictions of the present theory concerning non-equilibrium 
effects on wall properties such as heat transfer are confirmed by the results of 
Broadwell (1958), Fay & Riddell (1958), Inger (1963) and Chung & Anderson 
(1960). Since the latter three investigations employed fairly realistic chemical 
reaction models of the gas, this agreement also verifies that the linearized 
reaction-rate model used here does account for the main physical features of the 
problem as assumed. 

Stimulating discussions with Dr G. Emanuel are gratefully acknowledged. 

Appendix. Matching of inner and outer solutions 
Consider first the matching procedure for the perfectly catalytic wall case. 

From (15)) (16) and (17) we have the outer solution for the atom concen- 
tration as 

4l(q, fLt. = {d&?(o)/rP) ff”(0)/AI2 + O(r--2i-2R) + * f *, 

which when rewritten in terms of the inner variable Q = rSy and expanded for 
large I? [using the fact that f”’(0) = 01 becomes 
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From (19) ,  (%a) ,  ( 2 6 a )  and (27a), the corresponding inner solution is 

a,(&, ()cat. = El I?-4 sinh [iRQ + E2 sinh [@& 

+- [l  -exp ( -  6@&)] + E,r-%sinh[@Q + O ( F )  + ... 
GR 

which in terms of the outer variable 7 for large I' becomes 

805 

bi(r, fJcat. = sinh (rE@Rr4) E,r-@' if EN p 0 
N 1. (A21 

= (r[R)-lakQ(o) -exp ( -p r r+ ) ]  if E ,  = 0.J 

Neglecting exponentially small terms, expressions ( A  1)  and ( A  2)  will match as 
required if El = E,= E, = ... = 0. 

The non-catalytic wall case is treated in the same way. From (16) ,  (17)  and 
(20) [using the fact that g k ( 0 )  = 0 from ( 2 2 ) ]  the outer solution written in terms 
of the inner variable and expanded for large r is found to be 

Equations (19), (25b) ,  (26b)  and (27b)  yield the following expression for the 
corresponding inner solution in terms of the outer variable : 

EJq, = coshr@RI't ENr- jN if Elv =+ 0 
N 

Neglecting exponentially small terms, matching of ( A  3) and (A 4) is obtained 
again by requiring E, = E, = E, = ... = 0. 
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